This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnopco.1 | ⊢ 𝑆 ∈ LinOp | |
| lnopco.2 | ⊢ 𝑇 ∈ LinOp | ||
| Assertion | lnophsi | ⊢ ( 𝑆 +op 𝑇 ) ∈ LinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopco.1 | ⊢ 𝑆 ∈ LinOp | |
| 2 | lnopco.2 | ⊢ 𝑇 ∈ LinOp | |
| 3 | 1 | lnopfi | ⊢ 𝑆 : ℋ ⟶ ℋ |
| 4 | 2 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 | 3 4 | hoaddcli | ⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 6 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 7 | 1 | lnopaddi | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) ) |
| 8 | 2 | lnopaddi | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 9 | 7 8 | oveq12d | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 10 | 6 9 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 11 | 3 | ffvelcdmi | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
| 12 | 6 11 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
| 13 | 3 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℋ → ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) |
| 14 | 12 13 | anim12i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) ) |
| 15 | 4 | ffvelcdmi | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
| 16 | 6 15 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
| 17 | 4 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 18 | 16 17 | anim12i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) ) |
| 19 | hvadd4 | ⊢ ( ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) ∧ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) ) → ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 20 | 14 18 19 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 21 | 10 20 | eqtrd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 22 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 23 | 6 22 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 24 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) | |
| 25 | 3 4 24 | mp3an12 | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 27 | 3 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑆 ‘ 𝑦 ) ∈ ℋ ) |
| 28 | 4 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 29 | 27 28 | jca | ⊢ ( 𝑦 ∈ ℋ → ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 30 | ax-hvdistr1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 31 | 30 | 3expb | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 32 | 29 31 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 33 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) = ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 34 | 3 4 33 | mp3an12 | ⊢ ( 𝑦 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) = ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 37 | 1 | lnopmuli | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) ) |
| 38 | 2 | lnopmuli | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 39 | 37 38 | oveq12d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 40 | 32 36 39 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) ) |
| 41 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) = ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) | |
| 42 | 3 4 41 | mp3an12 | ⊢ ( 𝑧 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) = ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 43 | 40 42 | oveqan12d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 44 | 21 26 43 | 3eqtr4d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) |
| 46 | 45 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) |
| 47 | ellnop | ⊢ ( ( 𝑆 +op 𝑇 ) ∈ LinOp ↔ ( ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) ) | |
| 48 | 5 46 47 | mpbir2an | ⊢ ( 𝑆 +op 𝑇 ) ∈ LinOp |