This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnopco.1 | ⊢ 𝑆 ∈ LinOp | |
| lnopco.2 | ⊢ 𝑇 ∈ LinOp | ||
| Assertion | lnophdi | ⊢ ( 𝑆 −op 𝑇 ) ∈ LinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopco.1 | ⊢ 𝑆 ∈ LinOp | |
| 2 | lnopco.2 | ⊢ 𝑇 ∈ LinOp | |
| 3 | 1 | lnopfi | ⊢ 𝑆 : ℋ ⟶ ℋ |
| 4 | 2 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 | 3 4 | honegsubi | ⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) = ( 𝑆 −op 𝑇 ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 2 | lnopmi | ⊢ ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ LinOp ) |
| 8 | 6 7 | ax-mp | ⊢ ( - 1 ·op 𝑇 ) ∈ LinOp |
| 9 | 1 8 | lnophsi | ⊢ ( 𝑆 +op ( - 1 ·op 𝑇 ) ) ∈ LinOp |
| 10 | 5 9 | eqeltrri | ⊢ ( 𝑆 −op 𝑇 ) ∈ LinOp |