This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnop | ⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑤 ) = ( 𝑇 ‘ 𝑤 ) ) | |
| 2 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑡 = 𝑇 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 5 | 4 | breq1d | ⊢ ( 𝑡 = 𝑇 → ( ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑡 = 𝑇 → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 7 | 6 | rexralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 8 | 7 | 2ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 9 | df-cnop | ⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 11 | ax-hilex | ⊢ ℋ ∈ V | |
| 12 | 11 11 | elmap | ⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 14 | 10 13 | bitri | ⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |