This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopcon | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ ContOp ↔ if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) | |
| 2 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) = ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ) |
| 4 | 3 | breq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 5 | 4 | rexralbidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 6 | 1 5 | bibi12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ↔ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) ) |
| 7 | idlnop | ⊢ ( I ↾ ℋ ) ∈ LinOp | |
| 8 | 7 | elimel | ⊢ if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
| 9 | 8 | lnopconi | ⊢ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 10 | 6 9 | dedth | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |