This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| lmodfopne.a | |- .+ = ( +f ` W ) |
||
| lmodfopne.v | |- V = ( Base ` W ) |
||
| lmodfopne.s | |- S = ( Scalar ` W ) |
||
| lmodfopne.k | |- K = ( Base ` S ) |
||
| lmodfopne.0 | |- .0. = ( 0g ` S ) |
||
| lmodfopne.1 | |- .1. = ( 1r ` S ) |
||
| Assertion | lmodfopnelem2 | |- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| 2 | lmodfopne.a | |- .+ = ( +f ` W ) |
|
| 3 | lmodfopne.v | |- V = ( Base ` W ) |
|
| 4 | lmodfopne.s | |- S = ( Scalar ` W ) |
|
| 5 | lmodfopne.k | |- K = ( Base ` S ) |
|
| 6 | lmodfopne.0 | |- .0. = ( 0g ` S ) |
|
| 7 | lmodfopne.1 | |- .1. = ( 1r ` S ) |
|
| 8 | 1 2 3 4 5 | lmodfopnelem1 | |- ( ( W e. LMod /\ .+ = .x. ) -> V = K ) |
| 9 | 8 | ex | |- ( W e. LMod -> ( .+ = .x. -> V = K ) ) |
| 10 | 4 5 6 | lmod0cl | |- ( W e. LMod -> .0. e. K ) |
| 11 | 4 5 7 | lmod1cl | |- ( W e. LMod -> .1. e. K ) |
| 12 | 10 11 | jca | |- ( W e. LMod -> ( .0. e. K /\ .1. e. K ) ) |
| 13 | eleq2 | |- ( V = K -> ( .0. e. V <-> .0. e. K ) ) |
|
| 14 | eleq2 | |- ( V = K -> ( .1. e. V <-> .1. e. K ) ) |
|
| 15 | 13 14 | anbi12d | |- ( V = K -> ( ( .0. e. V /\ .1. e. V ) <-> ( .0. e. K /\ .1. e. K ) ) ) |
| 16 | 12 15 | syl5ibrcom | |- ( W e. LMod -> ( V = K -> ( .0. e. V /\ .1. e. V ) ) ) |
| 17 | 9 16 | syld | |- ( W e. LMod -> ( .+ = .x. -> ( .0. e. V /\ .1. e. V ) ) ) |
| 18 | 17 | imp | |- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) |