This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007) (Proof shortened by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dishaus | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 2 | simplrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝐴 ) | |
| 3 | 2 | snssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 } ⊆ 𝐴 ) |
| 4 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 5 | 4 | elpw | ⊢ ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
| 6 | 3 5 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 } ∈ 𝒫 𝐴 ) |
| 7 | simplrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝐴 ) | |
| 8 | 7 | snssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑦 } ⊆ 𝐴 ) |
| 9 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 10 | 9 | elpw | ⊢ ( { 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
| 11 | 8 10 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑦 } ∈ 𝒫 𝐴 ) |
| 12 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 13 | 12 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ { 𝑥 } ) |
| 14 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
| 15 | 14 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ { 𝑦 } ) |
| 16 | disjsn2 | ⊢ ( 𝑥 ≠ 𝑦 → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) |
| 18 | eleq2 | ⊢ ( 𝑢 = { 𝑥 } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 19 | ineq1 | ⊢ ( 𝑢 = { 𝑥 } → ( 𝑢 ∩ 𝑣 ) = ( { 𝑥 } ∩ 𝑣 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ) |
| 21 | 18 20 | 3anbi13d | ⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ) ) |
| 22 | eleq2 | ⊢ ( 𝑣 = { 𝑦 } → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ { 𝑦 } ) ) | |
| 23 | ineq2 | ⊢ ( 𝑣 = { 𝑦 } → ( { 𝑥 } ∩ 𝑣 ) = ( { 𝑥 } ∩ { 𝑦 } ) ) | |
| 24 | 23 | eqeq1d | ⊢ ( 𝑣 = { 𝑦 } → ( ( { 𝑥 } ∩ 𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) |
| 25 | 22 24 | 3anbi23d | ⊢ ( 𝑣 = { 𝑦 } → ( ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) ) |
| 26 | 21 25 | rspc2ev | ⊢ ( ( { 𝑥 } ∈ 𝒫 𝐴 ∧ { 𝑦 } ∈ 𝒫 𝐴 ∧ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 27 | 6 11 13 15 17 26 | syl113anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 28 | 27 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 29 | 28 | ralrimivva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 30 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 31 | 30 | eqcomi | ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 32 | 31 | ishaus | ⊢ ( 𝒫 𝐴 ∈ Haus ↔ ( 𝒫 𝐴 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) ) |
| 33 | 1 29 32 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus ) |