This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txlm.z | |- Z = ( ZZ>= ` M ) |
|
| txlm.m | |- ( ph -> M e. ZZ ) |
||
| txlm.j | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| txlm.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| txlm.f | |- ( ph -> F : Z --> X ) |
||
| txlm.g | |- ( ph -> G : Z --> Y ) |
||
| lmcn2.fl | |- ( ph -> F ( ~~>t ` J ) R ) |
||
| lmcn2.gl | |- ( ph -> G ( ~~>t ` K ) S ) |
||
| lmcn2.o | |- ( ph -> O e. ( ( J tX K ) Cn N ) ) |
||
| lmcn2.h | |- H = ( n e. Z |-> ( ( F ` n ) O ( G ` n ) ) ) |
||
| Assertion | lmcn2 | |- ( ph -> H ( ~~>t ` N ) ( R O S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | txlm.m | |- ( ph -> M e. ZZ ) |
|
| 3 | txlm.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 4 | txlm.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 5 | txlm.f | |- ( ph -> F : Z --> X ) |
|
| 6 | txlm.g | |- ( ph -> G : Z --> Y ) |
|
| 7 | lmcn2.fl | |- ( ph -> F ( ~~>t ` J ) R ) |
|
| 8 | lmcn2.gl | |- ( ph -> G ( ~~>t ` K ) S ) |
|
| 9 | lmcn2.o | |- ( ph -> O e. ( ( J tX K ) Cn N ) ) |
|
| 10 | lmcn2.h | |- H = ( n e. Z |-> ( ( F ` n ) O ( G ` n ) ) ) |
|
| 11 | 5 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. X ) |
| 12 | 6 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( G ` n ) e. Y ) |
| 13 | 11 12 | opelxpd | |- ( ( ph /\ n e. Z ) -> <. ( F ` n ) , ( G ` n ) >. e. ( X X. Y ) ) |
| 14 | eqidd | |- ( ph -> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) = ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) |
|
| 15 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 16 | 3 4 15 | syl2anc | |- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 17 | cntop2 | |- ( O e. ( ( J tX K ) Cn N ) -> N e. Top ) |
|
| 18 | 9 17 | syl | |- ( ph -> N e. Top ) |
| 19 | toptopon2 | |- ( N e. Top <-> N e. ( TopOn ` U. N ) ) |
|
| 20 | 18 19 | sylib | |- ( ph -> N e. ( TopOn ` U. N ) ) |
| 21 | cnf2 | |- ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ N e. ( TopOn ` U. N ) /\ O e. ( ( J tX K ) Cn N ) ) -> O : ( X X. Y ) --> U. N ) |
|
| 22 | 16 20 9 21 | syl3anc | |- ( ph -> O : ( X X. Y ) --> U. N ) |
| 23 | 22 | feqmptd | |- ( ph -> O = ( x e. ( X X. Y ) |-> ( O ` x ) ) ) |
| 24 | fveq2 | |- ( x = <. ( F ` n ) , ( G ` n ) >. -> ( O ` x ) = ( O ` <. ( F ` n ) , ( G ` n ) >. ) ) |
|
| 25 | df-ov | |- ( ( F ` n ) O ( G ` n ) ) = ( O ` <. ( F ` n ) , ( G ` n ) >. ) |
|
| 26 | 24 25 | eqtr4di | |- ( x = <. ( F ` n ) , ( G ` n ) >. -> ( O ` x ) = ( ( F ` n ) O ( G ` n ) ) ) |
| 27 | 13 14 23 26 | fmptco | |- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) = ( n e. Z |-> ( ( F ` n ) O ( G ` n ) ) ) ) |
| 28 | 27 10 | eqtr4di | |- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) = H ) |
| 29 | eqid | |- ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) = ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) |
|
| 30 | 1 2 3 4 5 6 29 | txlm | |- ( ph -> ( ( F ( ~~>t ` J ) R /\ G ( ~~>t ` K ) S ) <-> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ( ~~>t ` ( J tX K ) ) <. R , S >. ) ) |
| 31 | 7 8 30 | mpbi2and | |- ( ph -> ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ( ~~>t ` ( J tX K ) ) <. R , S >. ) |
| 32 | 31 9 | lmcn | |- ( ph -> ( O o. ( n e. Z |-> <. ( F ` n ) , ( G ` n ) >. ) ) ( ~~>t ` N ) ( O ` <. R , S >. ) ) |
| 33 | 28 32 | eqbrtrrd | |- ( ph -> H ( ~~>t ` N ) ( O ` <. R , S >. ) ) |
| 34 | df-ov | |- ( R O S ) = ( O ` <. R , S >. ) |
|
| 35 | 33 34 | breqtrrdi | |- ( ph -> H ( ~~>t ` N ) ( R O S ) ) |