This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| lmff.4 | |- ( ph -> M e. ZZ ) |
||
| lmcls.5 | |- ( ph -> F ( ~~>t ` J ) P ) |
||
| lmcls.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S ) |
||
| lmcls.8 | |- ( ph -> S C_ X ) |
||
| Assertion | lmcls | |- ( ph -> P e. ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | lmff.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | lmcls.5 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| 5 | lmcls.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S ) |
|
| 6 | lmcls.8 | |- ( ph -> S C_ X ) |
|
| 7 | 2 1 3 | lmbr2 | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. u e. J ( P e. u -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> ( F e. ( X ^pm CC ) /\ P e. X /\ A. u e. J ( P e. u -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) |
| 9 | 8 | simp3d | |- ( ph -> A. u e. J ( P e. u -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
| 10 | 1 | r19.2uz | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) -> E. k e. Z ( k e. dom F /\ ( F ` k ) e. u ) ) |
| 11 | inelcm | |- ( ( ( F ` k ) e. u /\ ( F ` k ) e. S ) -> ( u i^i S ) =/= (/) ) |
|
| 12 | 11 | a1i | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) e. u /\ ( F ` k ) e. S ) -> ( u i^i S ) =/= (/) ) ) |
| 13 | 5 12 | mpan2d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) e. u -> ( u i^i S ) =/= (/) ) ) |
| 14 | 13 | adantld | |- ( ( ph /\ k e. Z ) -> ( ( k e. dom F /\ ( F ` k ) e. u ) -> ( u i^i S ) =/= (/) ) ) |
| 15 | 14 | rexlimdva | |- ( ph -> ( E. k e. Z ( k e. dom F /\ ( F ` k ) e. u ) -> ( u i^i S ) =/= (/) ) ) |
| 16 | 10 15 | syl5 | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) -> ( u i^i S ) =/= (/) ) ) |
| 17 | 16 | imim2d | |- ( ph -> ( ( P e. u -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) -> ( P e. u -> ( u i^i S ) =/= (/) ) ) ) |
| 18 | 17 | ralimdv | |- ( ph -> ( A. u e. J ( P e. u -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) -> A. u e. J ( P e. u -> ( u i^i S ) =/= (/) ) ) ) |
| 19 | 9 18 | mpd | |- ( ph -> A. u e. J ( P e. u -> ( u i^i S ) =/= (/) ) ) |
| 20 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 21 | 2 20 | syl | |- ( ph -> J e. Top ) |
| 22 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 23 | 2 22 | syl | |- ( ph -> X = U. J ) |
| 24 | 6 23 | sseqtrd | |- ( ph -> S C_ U. J ) |
| 25 | lmcl | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) P ) -> P e. X ) |
|
| 26 | 2 4 25 | syl2anc | |- ( ph -> P e. X ) |
| 27 | 26 23 | eleqtrd | |- ( ph -> P e. U. J ) |
| 28 | eqid | |- U. J = U. J |
|
| 29 | 28 | elcls | |- ( ( J e. Top /\ S C_ U. J /\ P e. U. J ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. u e. J ( P e. u -> ( u i^i S ) =/= (/) ) ) ) |
| 30 | 21 24 27 29 | syl3anc | |- ( ph -> ( P e. ( ( cls ` J ) ` S ) <-> A. u e. J ( P e. u -> ( u i^i S ) =/= (/) ) ) ) |
| 31 | 19 30 | mpbird | |- ( ph -> P e. ( ( cls ` J ) ` S ) ) |