This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | ||
| lmff.3 | |||
| lmff.4 | |||
| lmcls.5 | |||
| lmcls.7 | |||
| lmcld.8 | |||
| Assertion | lmcld |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | ||
| 2 | lmff.3 | ||
| 3 | lmff.4 | ||
| 4 | lmcls.5 | ||
| 5 | lmcls.7 | ||
| 6 | lmcld.8 | ||
| 7 | eqid | ||
| 8 | 7 | cldss | |
| 9 | 6 8 | syl | |
| 10 | toponuni | ||
| 11 | 2 10 | syl | |
| 12 | 9 11 | sseqtrrd | |
| 13 | 1 2 3 4 5 12 | lmcls | |
| 14 | cldcls | ||
| 15 | 6 14 | syl | |
| 16 | 13 15 | eleqtrd |