This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| lmff.4 | |- ( ph -> M e. ZZ ) |
||
| lmcls.5 | |- ( ph -> F ( ~~>t ` J ) P ) |
||
| lmcls.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S ) |
||
| lmcld.8 | |- ( ph -> S e. ( Clsd ` J ) ) |
||
| Assertion | lmcld | |- ( ph -> P e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | lmff.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | lmff.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | lmcls.5 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| 5 | lmcls.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S ) |
|
| 6 | lmcld.8 | |- ( ph -> S e. ( Clsd ` J ) ) |
|
| 7 | eqid | |- U. J = U. J |
|
| 8 | 7 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 9 | 6 8 | syl | |- ( ph -> S C_ U. J ) |
| 10 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 11 | 2 10 | syl | |- ( ph -> X = U. J ) |
| 12 | 9 11 | sseqtrrd | |- ( ph -> S C_ X ) |
| 13 | 1 2 3 4 5 12 | lmcls | |- ( ph -> P e. ( ( cls ` J ) ` S ) ) |
| 14 | cldcls | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |
|
| 15 | 6 14 | syl | |- ( ph -> ( ( cls ` J ) ` S ) = S ) |
| 16 | 13 15 | eleqtrd | |- ( ph -> P e. S ) |