This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | llnset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| llnset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| llnset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| llnset.n | ⊢ 𝑁 = ( LLines ‘ 𝐾 ) | ||
| Assertion | llnset | ⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llnset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | llnset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 3 | llnset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | llnset.n | ⊢ 𝑁 = ( LLines ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐷 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = ( ⋖ ‘ 𝐾 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = 𝐶 ) |
| 12 | 11 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 ↔ 𝑝 𝐶 𝑥 ) ) |
| 13 | 9 12 | rexeqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 ) ) |
| 14 | 7 13 | rabeqbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 15 | df-llines | ⊢ LLines = ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } ) | |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex | ⊢ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ∈ V |
| 18 | 14 15 17 | fvmpt | ⊢ ( 𝐾 ∈ V → ( LLines ‘ 𝐾 ) = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 19 | 4 18 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 20 | 5 19 | syl | ⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |