This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | llnset.b | |- B = ( Base ` K ) |
|
| llnset.c | |- C = ( |
||
| llnset.a | |- A = ( Atoms ` K ) |
||
| llnset.n | |- N = ( LLines ` K ) |
||
| Assertion | llnset | |- ( K e. D -> N = { x e. B | E. p e. A p C x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llnset.b | |- B = ( Base ` K ) |
|
| 2 | llnset.c | |- C = ( |
|
| 3 | llnset.a | |- A = ( Atoms ` K ) |
|
| 4 | llnset.n | |- N = ( LLines ` K ) |
|
| 5 | elex | |- ( K e. D -> K e. _V ) |
|
| 6 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 8 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 10 | fveq2 | |- ( k = K -> ( |
|
| 11 | 10 2 | eqtr4di | |- ( k = K -> ( |
| 12 | 11 | breqd | |- ( k = K -> ( p ( |
| 13 | 9 12 | rexeqbidv | |- ( k = K -> ( E. p e. ( Atoms ` k ) p ( |
| 14 | 7 13 | rabeqbidv | |- ( k = K -> { x e. ( Base ` k ) | E. p e. ( Atoms ` k ) p ( |
| 15 | df-llines | |- LLines = ( k e. _V |-> { x e. ( Base ` k ) | E. p e. ( Atoms ` k ) p ( |
|
| 16 | 1 | fvexi | |- B e. _V |
| 17 | 16 | rabex | |- { x e. B | E. p e. A p C x } e. _V |
| 18 | 14 15 17 | fvmpt | |- ( K e. _V -> ( LLines ` K ) = { x e. B | E. p e. A p C x } ) |
| 19 | 4 18 | eqtrid | |- ( K e. _V -> N = { x e. B | E. p e. A p C x } ) |
| 20 | 5 19 | syl | |- ( K e. D -> N = { x e. B | E. p e. A p C x } ) |