This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | llnset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| llnset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| llnset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| llnset.n | ⊢ 𝑁 = ( LLines ‘ 𝐾 ) | ||
| Assertion | islln | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llnset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | llnset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 3 | llnset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | llnset.n | ⊢ 𝑁 = ( LLines ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | llnset | ⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑝 𝐶 𝑥 ↔ 𝑝 𝐶 𝑋 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
| 10 | 6 9 | bitrdi | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) ) |