This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice k , in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-llines | ⊢ LLines = ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clln | ⊢ LLines | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑘 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑘 ) |
| 7 | vp | ⊢ 𝑝 | |
| 8 | catm | ⊢ Atoms | |
| 9 | 5 8 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 10 | 7 | cv | ⊢ 𝑝 |
| 11 | ccvr | ⊢ ⋖ | |
| 12 | 5 11 | cfv | ⊢ ( ⋖ ‘ 𝑘 ) |
| 13 | 3 | cv | ⊢ 𝑥 |
| 14 | 10 13 12 | wbr | ⊢ 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 |
| 15 | 14 7 9 | wrex | ⊢ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 |
| 16 | 15 3 6 | crab | ⊢ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } ) |
| 18 | 0 17 | wceq | ⊢ LLines = ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( ⋖ ‘ 𝑘 ) 𝑥 } ) |