This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lsspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lsspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | ||
| lsspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lsspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | ||
| lsspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| lsspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) | ||
| lsspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | ||
| Assertion | lsspropd | ⊢ ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lsspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lsspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | |
| 4 | lsspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | lsspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | |
| 6 | lsspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 7 | lsspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) | |
| 8 | lsspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | |
| 9 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝜑 ) | |
| 10 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑧 ∈ 𝑃 ) | |
| 11 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑠 ⊆ 𝐵 ) | |
| 12 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑎 ∈ 𝑠 ) | |
| 13 | 11 12 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 14 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 16 | ovrspc2v | ⊢ ( ( ( 𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ) | |
| 17 | 10 13 15 16 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ) |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝐵 ⊆ 𝑊 ) |
| 19 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝑠 ) | |
| 20 | 11 19 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝐵 ) |
| 21 | 18 20 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝑊 ) |
| 22 | 4 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 23 | 9 17 21 22 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 24 | 6 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ) |
| 25 | 9 10 13 24 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 27 | 23 26 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 28 | 27 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 29 | 28 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) → ( ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 30 | 29 | 2ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 31 | 30 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 32 | 31 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → ( ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 33 | 32 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) ) |
| 34 | 3anass | ⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ) | |
| 35 | 3anass | ⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) | |
| 36 | 33 34 35 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 37 | 1 | sseq2d | ⊢ ( 𝜑 → ( 𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ ( Base ‘ 𝐾 ) ) ) |
| 38 | 7 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) |
| 39 | 37 38 | 3anbi13d | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 40 | 2 | sseq2d | ⊢ ( 𝜑 → ( 𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ ( Base ‘ 𝐿 ) ) ) |
| 41 | 8 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 42 | 40 41 | 3anbi13d | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 43 | 36 39 42 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 44 | eqid | ⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) | |
| 45 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) | |
| 46 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 47 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 48 | eqid | ⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) | |
| 49 | eqid | ⊢ ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐾 ) | |
| 50 | 44 45 46 47 48 49 | islss | ⊢ ( 𝑠 ∈ ( LSubSp ‘ 𝐾 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) |
| 51 | eqid | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) | |
| 52 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) | |
| 53 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 54 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 55 | eqid | ⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) | |
| 56 | eqid | ⊢ ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 ) | |
| 57 | 51 52 53 54 55 56 | islss | ⊢ ( 𝑠 ∈ ( LSubSp ‘ 𝐿 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 58 | 43 50 57 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑠 ∈ ( LSubSp ‘ 𝐾 ) ↔ 𝑠 ∈ ( LSubSp ‘ 𝐿 ) ) ) |
| 59 | 58 | eqrdv | ⊢ ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) ) |