This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lfgrwlkprop.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | lfgrwlkprop | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfgrwlkprop.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 1 | iswlk | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 6 | ifptru | ⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 8 | simplr | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) | |
| 9 | wrdsymbcl | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) | |
| 10 | 9 | ad4ant14 | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 11 | 8 10 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 12 | fveq2 | ⊢ ( 𝑥 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 13 | 12 | breq2d | ⊢ ( 𝑥 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 14 | 13 | elrab | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 15 | fveq2 | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ) | |
| 16 | 15 | breq2d | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ) ) |
| 17 | fvex | ⊢ ( 𝑃 ‘ 𝑘 ) ∈ V | |
| 18 | hashsng | ⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ V → ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) = 1 ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) = 1 |
| 20 | 19 | breq2i | ⊢ ( 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ↔ 2 ≤ 1 ) |
| 21 | 1lt2 | ⊢ 1 < 2 | |
| 22 | 1re | ⊢ 1 ∈ ℝ | |
| 23 | 2re | ⊢ 2 ∈ ℝ | |
| 24 | 22 23 | ltnlei | ⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 25 | pm2.21 | ⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 26 | 24 25 | sylbi | ⊢ ( 1 < 2 → ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 27 | 21 26 | ax-mp | ⊢ ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 28 | 20 27 | sylbi | ⊢ ( 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 29 | 16 28 | biimtrdi | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 | 29 | com12 | ⊢ ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 32 | 31 | a1i | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 33 | 14 32 | biimtrid | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 34 | 11 33 | mpd | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 36 | 7 35 | sylbid | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 38 | neqne | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 39 | 38 | 2a1d | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 40 | 37 39 | pm2.61i | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 41 | 40 | ralimdva | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 42 | 41 | ex | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 43 | 42 | com23 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 44 | 43 | 3impia | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 45 | 5 44 | biimtrdi | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 46 | 45 | pm2.43i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 47 | 46 | imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |