This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lfgrwlkprop.i | |- I = ( iEdg ` G ) |
|
| Assertion | lfgrwlkprop | |- ( ( F ( Walks ` G ) P /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfgrwlkprop.i | |- I = ( iEdg ` G ) |
|
| 2 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 1 | iswlk | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 5 | 2 4 | syl | |- ( F ( Walks ` G ) P -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 6 | ifptru | |- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) |
|
| 7 | 6 | adantr | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) |
| 8 | simplr | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
|
| 9 | wrdsymbcl | |- ( ( F e. Word dom I /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom I ) |
|
| 10 | 9 | ad4ant14 | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom I ) |
| 11 | 8 10 | ffvelcdmd | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 12 | fveq2 | |- ( x = ( I ` ( F ` k ) ) -> ( # ` x ) = ( # ` ( I ` ( F ` k ) ) ) ) |
|
| 13 | 12 | breq2d | |- ( x = ( I ` ( F ` k ) ) -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) ) |
| 14 | 13 | elrab | |- ( ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) ) |
| 15 | fveq2 | |- ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( # ` ( I ` ( F ` k ) ) ) = ( # ` { ( P ` k ) } ) ) |
|
| 16 | 15 | breq2d | |- ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) <-> 2 <_ ( # ` { ( P ` k ) } ) ) ) |
| 17 | fvex | |- ( P ` k ) e. _V |
|
| 18 | hashsng | |- ( ( P ` k ) e. _V -> ( # ` { ( P ` k ) } ) = 1 ) |
|
| 19 | 17 18 | ax-mp | |- ( # ` { ( P ` k ) } ) = 1 |
| 20 | 19 | breq2i | |- ( 2 <_ ( # ` { ( P ` k ) } ) <-> 2 <_ 1 ) |
| 21 | 1lt2 | |- 1 < 2 |
|
| 22 | 1re | |- 1 e. RR |
|
| 23 | 2re | |- 2 e. RR |
|
| 24 | 22 23 | ltnlei | |- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 25 | pm2.21 | |- ( -. 2 <_ 1 -> ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
|
| 26 | 24 25 | sylbi | |- ( 1 < 2 -> ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 27 | 21 26 | ax-mp | |- ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 28 | 20 27 | sylbi | |- ( 2 <_ ( # ` { ( P ` k ) } ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 29 | 16 28 | biimtrdi | |- ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 30 | 29 | com12 | |- ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 31 | 30 | adantl | |- ( ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 32 | 31 | a1i | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 33 | 14 32 | biimtrid | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 34 | 11 33 | mpd | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 35 | 34 | adantl | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 36 | 7 35 | sylbid | |- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 37 | 36 | ex | |- ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 38 | neqne | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
|
| 39 | 38 | 2a1d | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 40 | 37 39 | pm2.61i | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 41 | 40 | ralimdva | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 42 | 41 | ex | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 43 | 42 | com23 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 44 | 43 | 3impia | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 45 | 5 44 | biimtrdi | |- ( F ( Walks ` G ) P -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 46 | 45 | pm2.43i | |- ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 47 | 46 | imp | |- ( ( F ( Walks ` G ) P /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |