This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed enough, smaller real C has the same floor of A when both are divided by B . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lefldiveq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| lefldiveq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| lefldiveq.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ) | ||
| Assertion | lefldiveq | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lefldiveq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | lefldiveq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | lefldiveq.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ) | |
| 4 | moddiffl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 6 | 1 2 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 7 | 6 | flcld | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
| 8 | 5 7 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℤ ) |
| 9 | flid | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℤ → ( ⌊ ‘ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) = ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) = ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 11 | 10 5 | eqtr2d | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) ) |
| 12 | 1 2 | modcld | ⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 13 | 1 12 | resubcld | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ ) |
| 14 | 13 2 | rerpdivcld | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℝ ) |
| 15 | iccssre | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ⊆ ℝ ) | |
| 16 | 13 1 15 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ⊆ ℝ ) |
| 17 | 16 3 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 18 | 17 2 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 19 | 13 | rexrd | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ* ) |
| 20 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 21 | iccgelb | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ) → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ≤ 𝐶 ) | |
| 22 | 19 20 3 21 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ≤ 𝐶 ) |
| 23 | 13 17 2 22 | lediv1dd | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ≤ ( 𝐶 / 𝐵 ) ) |
| 24 | flwordi | ⊢ ( ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℝ ∧ ( 𝐶 / 𝐵 ) ∈ ℝ ∧ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ≤ ( 𝐶 / 𝐵 ) ) → ( ⌊ ‘ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) | |
| 25 | 14 18 23 24 | syl3anc | ⊢ ( 𝜑 → ( ⌊ ‘ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) |
| 26 | 11 25 | eqbrtrd | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) |
| 27 | iccleub | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ) → 𝐶 ≤ 𝐴 ) | |
| 28 | 19 20 3 27 | syl3anc | ⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) |
| 29 | 17 1 2 28 | lediv1dd | ⊢ ( 𝜑 → ( 𝐶 / 𝐵 ) ≤ ( 𝐴 / 𝐵 ) ) |
| 30 | flwordi | ⊢ ( ( ( 𝐶 / 𝐵 ) ∈ ℝ ∧ ( 𝐴 / 𝐵 ) ∈ ℝ ∧ ( 𝐶 / 𝐵 ) ≤ ( 𝐴 / 𝐵 ) ) → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) | |
| 31 | 18 6 29 30 | syl3anc | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 32 | reflcl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 33 | 6 32 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 34 | reflcl | ⊢ ( ( 𝐶 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ∈ ℝ ) | |
| 35 | 18 34 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ∈ ℝ ) |
| 36 | 33 35 | letri3d | ⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ↔ ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ∧ ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ≤ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 37 | 26 31 36 | mpbir2and | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) |