This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed enough, smaller real C has the same floor of A when both are divided by B . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lefldiveq.a | |- ( ph -> A e. RR ) |
|
| lefldiveq.b | |- ( ph -> B e. RR+ ) |
||
| lefldiveq.c | |- ( ph -> C e. ( ( A - ( A mod B ) ) [,] A ) ) |
||
| Assertion | lefldiveq | |- ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lefldiveq.a | |- ( ph -> A e. RR ) |
|
| 2 | lefldiveq.b | |- ( ph -> B e. RR+ ) |
|
| 3 | lefldiveq.c | |- ( ph -> C e. ( ( A - ( A mod B ) ) [,] A ) ) |
|
| 4 | moddiffl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |
|
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |
| 6 | 1 2 | rerpdivcld | |- ( ph -> ( A / B ) e. RR ) |
| 7 | 6 | flcld | |- ( ph -> ( |_ ` ( A / B ) ) e. ZZ ) |
| 8 | 5 7 | eqeltrd | |- ( ph -> ( ( A - ( A mod B ) ) / B ) e. ZZ ) |
| 9 | flid | |- ( ( ( A - ( A mod B ) ) / B ) e. ZZ -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) = ( ( A - ( A mod B ) ) / B ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) = ( ( A - ( A mod B ) ) / B ) ) |
| 11 | 10 5 | eqtr2d | |- ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( ( A - ( A mod B ) ) / B ) ) ) |
| 12 | 1 2 | modcld | |- ( ph -> ( A mod B ) e. RR ) |
| 13 | 1 12 | resubcld | |- ( ph -> ( A - ( A mod B ) ) e. RR ) |
| 14 | 13 2 | rerpdivcld | |- ( ph -> ( ( A - ( A mod B ) ) / B ) e. RR ) |
| 15 | iccssre | |- ( ( ( A - ( A mod B ) ) e. RR /\ A e. RR ) -> ( ( A - ( A mod B ) ) [,] A ) C_ RR ) |
|
| 16 | 13 1 15 | syl2anc | |- ( ph -> ( ( A - ( A mod B ) ) [,] A ) C_ RR ) |
| 17 | 16 3 | sseldd | |- ( ph -> C e. RR ) |
| 18 | 17 2 | rerpdivcld | |- ( ph -> ( C / B ) e. RR ) |
| 19 | 13 | rexrd | |- ( ph -> ( A - ( A mod B ) ) e. RR* ) |
| 20 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 21 | iccgelb | |- ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,] A ) ) -> ( A - ( A mod B ) ) <_ C ) |
|
| 22 | 19 20 3 21 | syl3anc | |- ( ph -> ( A - ( A mod B ) ) <_ C ) |
| 23 | 13 17 2 22 | lediv1dd | |- ( ph -> ( ( A - ( A mod B ) ) / B ) <_ ( C / B ) ) |
| 24 | flwordi | |- ( ( ( ( A - ( A mod B ) ) / B ) e. RR /\ ( C / B ) e. RR /\ ( ( A - ( A mod B ) ) / B ) <_ ( C / B ) ) -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) <_ ( |_ ` ( C / B ) ) ) |
|
| 25 | 14 18 23 24 | syl3anc | |- ( ph -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) <_ ( |_ ` ( C / B ) ) ) |
| 26 | 11 25 | eqbrtrd | |- ( ph -> ( |_ ` ( A / B ) ) <_ ( |_ ` ( C / B ) ) ) |
| 27 | iccleub | |- ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,] A ) ) -> C <_ A ) |
|
| 28 | 19 20 3 27 | syl3anc | |- ( ph -> C <_ A ) |
| 29 | 17 1 2 28 | lediv1dd | |- ( ph -> ( C / B ) <_ ( A / B ) ) |
| 30 | flwordi | |- ( ( ( C / B ) e. RR /\ ( A / B ) e. RR /\ ( C / B ) <_ ( A / B ) ) -> ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) |
|
| 31 | 18 6 29 30 | syl3anc | |- ( ph -> ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) |
| 32 | reflcl | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 33 | 6 32 | syl | |- ( ph -> ( |_ ` ( A / B ) ) e. RR ) |
| 34 | reflcl | |- ( ( C / B ) e. RR -> ( |_ ` ( C / B ) ) e. RR ) |
|
| 35 | 18 34 | syl | |- ( ph -> ( |_ ` ( C / B ) ) e. RR ) |
| 36 | 33 35 | letri3d | |- ( ph -> ( ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) <-> ( ( |_ ` ( A / B ) ) <_ ( |_ ` ( C / B ) ) /\ ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) ) ) |
| 37 | 26 31 36 | mpbir2and | |- ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) ) |