This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the floor function. (Contributed by NM, 31-Dec-2005) (Proof shortened by Fan Zheng, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flwordi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | flcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 3 | 2 | zred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 5 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 8 | 3 1 4 6 7 | letrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 9 | flge | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) ) | |
| 10 | 4 2 9 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) ) |
| 11 | 8 10 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) |