This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the lcm operator. ( M lcm N ) is the least common multiple of M and N . If either M or N is 0 , the result is defined conventionally as 0 . Contrast with df-gcd and gcdval . (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( x = M -> ( x = 0 <-> M = 0 ) ) |
|
| 2 | 1 | orbi1d | |- ( x = M -> ( ( x = 0 \/ y = 0 ) <-> ( M = 0 \/ y = 0 ) ) ) |
| 3 | breq1 | |- ( x = M -> ( x || n <-> M || n ) ) |
|
| 4 | 3 | anbi1d | |- ( x = M -> ( ( x || n /\ y || n ) <-> ( M || n /\ y || n ) ) ) |
| 5 | 4 | rabbidv | |- ( x = M -> { n e. NN | ( x || n /\ y || n ) } = { n e. NN | ( M || n /\ y || n ) } ) |
| 6 | 5 | infeq1d | |- ( x = M -> inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) = inf ( { n e. NN | ( M || n /\ y || n ) } , RR , < ) ) |
| 7 | 2 6 | ifbieq2d | |- ( x = M -> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) = if ( ( M = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ y || n ) } , RR , < ) ) ) |
| 8 | eqeq1 | |- ( y = N -> ( y = 0 <-> N = 0 ) ) |
|
| 9 | 8 | orbi2d | |- ( y = N -> ( ( M = 0 \/ y = 0 ) <-> ( M = 0 \/ N = 0 ) ) ) |
| 10 | breq1 | |- ( y = N -> ( y || n <-> N || n ) ) |
|
| 11 | 10 | anbi2d | |- ( y = N -> ( ( M || n /\ y || n ) <-> ( M || n /\ N || n ) ) ) |
| 12 | 11 | rabbidv | |- ( y = N -> { n e. NN | ( M || n /\ y || n ) } = { n e. NN | ( M || n /\ N || n ) } ) |
| 13 | 12 | infeq1d | |- ( y = N -> inf ( { n e. NN | ( M || n /\ y || n ) } , RR , < ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
| 14 | 9 13 | ifbieq2d | |- ( y = N -> if ( ( M = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ y || n ) } , RR , < ) ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
| 15 | df-lcm | |- lcm = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 \/ y = 0 ) , 0 , inf ( { n e. NN | ( x || n /\ y || n ) } , RR , < ) ) ) |
|
| 16 | c0ex | |- 0 e. _V |
|
| 17 | ltso | |- < Or RR |
|
| 18 | 17 | infex | |- inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) e. _V |
| 19 | 16 18 | ifex | |- if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) e. _V |
| 20 | 7 14 15 19 | ovmpo | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |