This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the _lcm function. ( _lcmZ ) is the least common multiple of the integers contained in the finite subset of integers Z . If at least one of the elements of Z is 0 , the result is defined conventionally as 0 . (Contributed by AV, 21-Apr-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfval | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) = if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lcmf | |- _lcm = ( z e. ~P ZZ |-> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) ) |
|
| 2 | eleq2 | |- ( z = Z -> ( 0 e. z <-> 0 e. Z ) ) |
|
| 3 | raleq | |- ( z = Z -> ( A. m e. z m || n <-> A. m e. Z m || n ) ) |
|
| 4 | 3 | rabbidv | |- ( z = Z -> { n e. NN | A. m e. z m || n } = { n e. NN | A. m e. Z m || n } ) |
| 5 | 4 | infeq1d | |- ( z = Z -> inf ( { n e. NN | A. m e. z m || n } , RR , < ) = inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) |
| 6 | 2 5 | ifbieq2d | |- ( z = Z -> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) = if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) ) |
| 7 | zex | |- ZZ e. _V |
|
| 8 | 7 | ssex | |- ( Z C_ ZZ -> Z e. _V ) |
| 9 | elpwg | |- ( Z e. _V -> ( Z e. ~P ZZ <-> Z C_ ZZ ) ) |
|
| 10 | 8 9 | syl | |- ( Z C_ ZZ -> ( Z e. ~P ZZ <-> Z C_ ZZ ) ) |
| 11 | 10 | ibir | |- ( Z C_ ZZ -> Z e. ~P ZZ ) |
| 12 | 11 | adantr | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> Z e. ~P ZZ ) |
| 13 | 0nn0 | |- 0 e. NN0 |
|
| 14 | 13 | a1i | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) -> 0 e. NN0 ) |
| 15 | df-nel | |- ( 0 e/ Z <-> -. 0 e. Z ) |
|
| 16 | ssrab2 | |- { n e. NN | A. m e. Z m || n } C_ NN |
|
| 17 | nnssnn0 | |- NN C_ NN0 |
|
| 18 | 16 17 | sstri | |- { n e. NN | A. m e. Z m || n } C_ NN0 |
| 19 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 20 | 16 19 | sseqtri | |- { n e. NN | A. m e. Z m || n } C_ ( ZZ>= ` 1 ) |
| 21 | fissn0dvdsn0 | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> { n e. NN | A. m e. Z m || n } =/= (/) ) |
|
| 22 | 21 | 3expa | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> { n e. NN | A. m e. Z m || n } =/= (/) ) |
| 23 | infssuzcl | |- ( ( { n e. NN | A. m e. Z m || n } C_ ( ZZ>= ` 1 ) /\ { n e. NN | A. m e. Z m || n } =/= (/) ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. { n e. NN | A. m e. Z m || n } ) |
|
| 24 | 20 22 23 | sylancr | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. { n e. NN | A. m e. Z m || n } ) |
| 25 | 18 24 | sselid | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. NN0 ) |
| 26 | 15 25 | sylan2br | |- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. NN0 ) |
| 27 | 14 26 | ifclda | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) e. NN0 ) |
| 28 | 1 6 12 27 | fvmptd3 | |- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) = if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) ) |