This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fissn0dvdsn0 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fissn0dvds | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) | |
| 2 | rabn0 | ⊢ ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) | |
| 3 | 1 2 | sylibr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) |