This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmeq0 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = 0 ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) | |
| 2 | 1 | nnne0d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ≠ 0 ) |
| 3 | 2 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) ≠ 0 ) ) |
| 4 | 3 | necon4bd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = 0 → ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 lcm 𝑁 ) = ( 0 lcm 𝑁 ) ) | |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | lcmcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) |
| 9 | lcm0val | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) | |
| 10 | 8 9 | eqtr3d | ⊢ ( 𝑁 ∈ ℤ → ( 0 lcm 𝑁 ) = 0 ) |
| 11 | 5 10 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 12 | 11 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 13 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) | |
| 14 | lcm0val | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) | |
| 15 | 13 14 | sylan9eqr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 17 | 12 16 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 18 | 17 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) ) |
| 19 | 4 18 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = 0 ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ) |