This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmeq0 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = 0 <-> ( M = 0 \/ N = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
|
| 2 | 1 | nnne0d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) =/= 0 ) |
| 3 | 2 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( M lcm N ) =/= 0 ) ) |
| 4 | 3 | necon4bd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = 0 -> ( M = 0 \/ N = 0 ) ) ) |
| 5 | oveq1 | |- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
|
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | lcmcom | |- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) |
|
| 8 | 6 7 | mpan2 | |- ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) |
| 9 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
|
| 10 | 8 9 | eqtr3d | |- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
| 11 | 5 10 | sylan9eqr | |- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 12 | 11 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 13 | oveq2 | |- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
|
| 14 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
|
| 15 | 13 14 | sylan9eqr | |- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 16 | 15 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 17 | 12 16 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
| 18 | 17 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 \/ N = 0 ) -> ( M lcm N ) = 0 ) ) |
| 19 | 4 18 | impbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = 0 <-> ( M = 0 \/ N = 0 ) ) ) |