This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmn0cl and dvdslcm . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcllem | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0val | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
|
| 2 | ssrab2 | |- { n e. NN | ( M || n /\ N || n ) } C_ NN |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 2 3 | sseqtri | |- { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) |
| 5 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 6 | 5 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M x. N ) e. ZZ ) |
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 9 | 7 8 | anim12i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. CC /\ N e. CC ) ) |
| 10 | ioran | |- ( -. ( M = 0 \/ N = 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) |
|
| 11 | df-ne | |- ( M =/= 0 <-> -. M = 0 ) |
|
| 12 | df-ne | |- ( N =/= 0 <-> -. N = 0 ) |
|
| 13 | 11 12 | anbi12i | |- ( ( M =/= 0 /\ N =/= 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) |
| 14 | 10 13 | sylbb2 | |- ( -. ( M = 0 \/ N = 0 ) -> ( M =/= 0 /\ N =/= 0 ) ) |
| 15 | mulne0 | |- ( ( ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
|
| 16 | 15 | an4s | |- ( ( ( M e. CC /\ N e. CC ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 17 | 9 14 16 | syl2an | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M x. N ) =/= 0 ) |
| 18 | nnabscl | |- ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) |
|
| 19 | 6 17 18 | syl2anc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( abs ` ( M x. N ) ) e. NN ) |
| 20 | dvdsmul1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
|
| 21 | dvdsabsb | |- ( ( M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( M || ( M x. N ) <-> M || ( abs ` ( M x. N ) ) ) ) |
|
| 22 | 5 21 | syldan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M x. N ) <-> M || ( abs ` ( M x. N ) ) ) ) |
| 23 | 20 22 | mpbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( abs ` ( M x. N ) ) ) |
| 24 | dvdsmul2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) ) |
|
| 25 | dvdsabsb | |- ( ( N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
|
| 26 | 5 25 | sylan2 | |- ( ( N e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
| 27 | 26 | anabss7 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
| 28 | 24 27 | mpbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( abs ` ( M x. N ) ) ) |
| 29 | 23 28 | jca | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) |
| 30 | 29 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) |
| 31 | breq2 | |- ( n = ( abs ` ( M x. N ) ) -> ( M || n <-> M || ( abs ` ( M x. N ) ) ) ) |
|
| 32 | breq2 | |- ( n = ( abs ` ( M x. N ) ) -> ( N || n <-> N || ( abs ` ( M x. N ) ) ) ) |
|
| 33 | 31 32 | anbi12d | |- ( n = ( abs ` ( M x. N ) ) -> ( ( M || n /\ N || n ) <-> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) ) |
| 34 | 33 | rspcev | |- ( ( ( abs ` ( M x. N ) ) e. NN /\ ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) -> E. n e. NN ( M || n /\ N || n ) ) |
| 35 | 19 30 34 | syl2anc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> E. n e. NN ( M || n /\ N || n ) ) |
| 36 | rabn0 | |- ( { n e. NN | ( M || n /\ N || n ) } =/= (/) <-> E. n e. NN ( M || n /\ N || n ) ) |
|
| 37 | 35 36 | sylibr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> { n e. NN | ( M || n /\ N || n ) } =/= (/) ) |
| 38 | infssuzcl | |- ( ( { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( M || n /\ N || n ) } =/= (/) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) e. { n e. NN | ( M || n /\ N || n ) } ) |
|
| 39 | 4 37 38 | sylancr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) e. { n e. NN | ( M || n /\ N || n ) } ) |
| 40 | 1 39 | eqeltrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |