This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latdisd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latdisd.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latdisd.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latdisd | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latdisd.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | latdisd.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | 1 2 3 | latdisdlem | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) ) ) |
| 5 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
| 6 | 5 | odulat | ⊢ ( 𝐾 ∈ Lat → ( ODual ‘ 𝐾 ) ∈ Lat ) |
| 7 | 5 1 | odubas | ⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
| 8 | 5 3 | odujoin | ⊢ ∧ = ( join ‘ ( ODual ‘ 𝐾 ) ) |
| 9 | 5 2 | odumeet | ⊢ ∨ = ( meet ‘ ( ODual ‘ 𝐾 ) ) |
| 10 | 7 8 9 | latdisdlem | ⊢ ( ( ODual ‘ 𝐾 ) ∈ Lat → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) ) ) |
| 11 | 6 10 | syl | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) ) ) |
| 12 | 4 11 | impbid | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( 𝑥 ∧ ( 𝑣 ∨ 𝑤 ) ) ) | |
| 14 | oveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∧ 𝑣 ) = ( 𝑥 ∧ 𝑣 ) ) | |
| 15 | oveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑤 ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑣 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ) |
| 17 | 13 16 | eqeq12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) ↔ ( 𝑥 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑣 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ) ) |
| 18 | oveq1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∨ 𝑤 ) = ( 𝑦 ∨ 𝑤 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑣 = 𝑦 → ( 𝑥 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑤 ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑥 ∧ 𝑣 ) = ( 𝑥 ∧ 𝑦 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑣 = 𝑦 → ( ( 𝑥 ∧ 𝑣 ) ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑣 = 𝑦 → ( ( 𝑥 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑣 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ↔ ( 𝑥 ∧ ( 𝑦 ∨ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∨ 𝑤 ) = ( 𝑦 ∨ 𝑧 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∧ ( 𝑦 ∨ 𝑤 ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑧 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 27 | 24 26 | eqeq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∧ ( 𝑦 ∨ 𝑤 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑤 ) ) ↔ ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 28 | 17 22 27 | cbvral3vw | ⊢ ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑢 ∧ ( 𝑣 ∨ 𝑤 ) ) = ( ( 𝑢 ∧ 𝑣 ) ∨ ( 𝑢 ∧ 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 29 | 12 28 | bitrdi | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∨ ( 𝑦 ∧ 𝑧 ) ) = ( ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑥 ∨ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |