This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs1 analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latabs1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latabs1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latabs1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latabs1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latabs1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latabs1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | latabs1.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 1 4 3 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 6 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 7 | 1 4 2 | latleeqj2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
| 8 | 7 | 3com23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
| 9 | 6 8 | syld3an3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( 𝑋 ∧ 𝑌 ) ) = 𝑋 ) |