This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice ~P A . (Contributed by Mario Carneiro, 11-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | knatar.1 | |- X = |^| { z e. ~P A | ( F ` z ) C_ z } |
|
| Assertion | knatar | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( X C_ A /\ ( F ` X ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knatar.1 | |- X = |^| { z e. ~P A | ( F ` z ) C_ z } |
|
| 2 | pwidg | |- ( A e. V -> A e. ~P A ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> A e. ~P A ) |
| 4 | simp2 | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` A ) C_ A ) |
|
| 5 | fveq2 | |- ( z = A -> ( F ` z ) = ( F ` A ) ) |
|
| 6 | id | |- ( z = A -> z = A ) |
|
| 7 | 5 6 | sseq12d | |- ( z = A -> ( ( F ` z ) C_ z <-> ( F ` A ) C_ A ) ) |
| 8 | 7 | intminss | |- ( ( A e. ~P A /\ ( F ` A ) C_ A ) -> |^| { z e. ~P A | ( F ` z ) C_ z } C_ A ) |
| 9 | 3 4 8 | syl2anc | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> |^| { z e. ~P A | ( F ` z ) C_ z } C_ A ) |
| 10 | 1 9 | eqsstrid | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> X C_ A ) |
| 11 | fveq2 | |- ( y = X -> ( F ` y ) = ( F ` X ) ) |
|
| 12 | 11 | sseq1d | |- ( y = X -> ( ( F ` y ) C_ ( F ` w ) <-> ( F ` X ) C_ ( F ` w ) ) ) |
| 13 | pweq | |- ( x = w -> ~P x = ~P w ) |
|
| 14 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 15 | 14 | sseq2d | |- ( x = w -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` y ) C_ ( F ` w ) ) ) |
| 16 | 13 15 | raleqbidv | |- ( x = w -> ( A. y e. ~P x ( F ` y ) C_ ( F ` x ) <-> A. y e. ~P w ( F ` y ) C_ ( F ` w ) ) ) |
| 17 | simpl3 | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) |
|
| 18 | simprl | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> w e. ~P A ) |
|
| 19 | 16 17 18 | rspcdva | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> A. y e. ~P w ( F ` y ) C_ ( F ` w ) ) |
| 20 | fveq2 | |- ( z = w -> ( F ` z ) = ( F ` w ) ) |
|
| 21 | id | |- ( z = w -> z = w ) |
|
| 22 | 20 21 | sseq12d | |- ( z = w -> ( ( F ` z ) C_ z <-> ( F ` w ) C_ w ) ) |
| 23 | 22 | intminss | |- ( ( w e. ~P A /\ ( F ` w ) C_ w ) -> |^| { z e. ~P A | ( F ` z ) C_ z } C_ w ) |
| 24 | 23 | adantl | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> |^| { z e. ~P A | ( F ` z ) C_ z } C_ w ) |
| 25 | 1 24 | eqsstrid | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> X C_ w ) |
| 26 | vex | |- w e. _V |
|
| 27 | 26 | elpw2 | |- ( X e. ~P w <-> X C_ w ) |
| 28 | 25 27 | sylibr | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> X e. ~P w ) |
| 29 | 12 19 28 | rspcdva | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> ( F ` X ) C_ ( F ` w ) ) |
| 30 | simprr | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> ( F ` w ) C_ w ) |
|
| 31 | 29 30 | sstrd | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ ( w e. ~P A /\ ( F ` w ) C_ w ) ) -> ( F ` X ) C_ w ) |
| 32 | 31 | expr | |- ( ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) /\ w e. ~P A ) -> ( ( F ` w ) C_ w -> ( F ` X ) C_ w ) ) |
| 33 | 32 | ralrimiva | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> A. w e. ~P A ( ( F ` w ) C_ w -> ( F ` X ) C_ w ) ) |
| 34 | ssintrab | |- ( ( F ` X ) C_ |^| { w e. ~P A | ( F ` w ) C_ w } <-> A. w e. ~P A ( ( F ` w ) C_ w -> ( F ` X ) C_ w ) ) |
|
| 35 | 33 34 | sylibr | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) C_ |^| { w e. ~P A | ( F ` w ) C_ w } ) |
| 36 | 22 | cbvrabv | |- { z e. ~P A | ( F ` z ) C_ z } = { w e. ~P A | ( F ` w ) C_ w } |
| 37 | 36 | inteqi | |- |^| { z e. ~P A | ( F ` z ) C_ z } = |^| { w e. ~P A | ( F ` w ) C_ w } |
| 38 | 1 37 | eqtri | |- X = |^| { w e. ~P A | ( F ` w ) C_ w } |
| 39 | 35 38 | sseqtrrdi | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) C_ X ) |
| 40 | 11 | sseq1d | |- ( y = X -> ( ( F ` y ) C_ ( F ` A ) <-> ( F ` X ) C_ ( F ` A ) ) ) |
| 41 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 42 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 43 | 42 | sseq2d | |- ( x = A -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` y ) C_ ( F ` A ) ) ) |
| 44 | 41 43 | raleqbidv | |- ( x = A -> ( A. y e. ~P x ( F ` y ) C_ ( F ` x ) <-> A. y e. ~P A ( F ` y ) C_ ( F ` A ) ) ) |
| 45 | simp3 | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) |
|
| 46 | 44 45 3 | rspcdva | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> A. y e. ~P A ( F ` y ) C_ ( F ` A ) ) |
| 47 | 3 10 | sselpwd | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> X e. ~P A ) |
| 48 | 40 46 47 | rspcdva | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) C_ ( F ` A ) ) |
| 49 | 48 4 | sstrd | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) C_ A ) |
| 50 | fvex | |- ( F ` X ) e. _V |
|
| 51 | 50 | elpw | |- ( ( F ` X ) e. ~P A <-> ( F ` X ) C_ A ) |
| 52 | 49 51 | sylibr | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) e. ~P A ) |
| 53 | fveq2 | |- ( y = ( F ` X ) -> ( F ` y ) = ( F ` ( F ` X ) ) ) |
|
| 54 | 53 | sseq1d | |- ( y = ( F ` X ) -> ( ( F ` y ) C_ ( F ` X ) <-> ( F ` ( F ` X ) ) C_ ( F ` X ) ) ) |
| 55 | pweq | |- ( x = X -> ~P x = ~P X ) |
|
| 56 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 57 | 56 | sseq2d | |- ( x = X -> ( ( F ` y ) C_ ( F ` x ) <-> ( F ` y ) C_ ( F ` X ) ) ) |
| 58 | 55 57 | raleqbidv | |- ( x = X -> ( A. y e. ~P x ( F ` y ) C_ ( F ` x ) <-> A. y e. ~P X ( F ` y ) C_ ( F ` X ) ) ) |
| 59 | 58 45 47 | rspcdva | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> A. y e. ~P X ( F ` y ) C_ ( F ` X ) ) |
| 60 | 50 | elpw | |- ( ( F ` X ) e. ~P X <-> ( F ` X ) C_ X ) |
| 61 | 39 60 | sylibr | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) e. ~P X ) |
| 62 | 54 59 61 | rspcdva | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` ( F ` X ) ) C_ ( F ` X ) ) |
| 63 | fveq2 | |- ( w = ( F ` X ) -> ( F ` w ) = ( F ` ( F ` X ) ) ) |
|
| 64 | id | |- ( w = ( F ` X ) -> w = ( F ` X ) ) |
|
| 65 | 63 64 | sseq12d | |- ( w = ( F ` X ) -> ( ( F ` w ) C_ w <-> ( F ` ( F ` X ) ) C_ ( F ` X ) ) ) |
| 66 | 65 | intminss | |- ( ( ( F ` X ) e. ~P A /\ ( F ` ( F ` X ) ) C_ ( F ` X ) ) -> |^| { w e. ~P A | ( F ` w ) C_ w } C_ ( F ` X ) ) |
| 67 | 52 62 66 | syl2anc | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> |^| { w e. ~P A | ( F ` w ) C_ w } C_ ( F ` X ) ) |
| 68 | 38 67 | eqsstrid | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> X C_ ( F ` X ) ) |
| 69 | 39 68 | eqssd | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( F ` X ) = X ) |
| 70 | 10 69 | jca | |- ( ( A e. V /\ ( F ` A ) C_ A /\ A. x e. ~P A A. y e. ~P x ( F ` y ) C_ ( F ` x ) ) -> ( X C_ A /\ ( F ` X ) = X ) ) |