This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of Margaris p. 110. (Contributed by NM, 20-Aug-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 29-Oct-2018) Avoid ax-13 . (Revised by Wolf Lammen, 7-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eu1.nf | ⊢ Ⅎ 𝑦 𝜑 | |
| Assertion | eu1 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu1.nf | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 3 | 2 | euf | ⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
| 4 | 1 | sb8euv | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 5 | 1 | sb6rfv | ⊢ ( 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 6 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 7 | 6 | imbi2i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ) |
| 9 | 5 8 | anbi12ci | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 10 | albiim | ⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ↔ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 11 | 9 10 | bitr4i | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
| 13 | 3 4 12 | 3bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ) |