This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The outer product of two vectors, expressed as | A >. <. B | in Dirac notation. See df-kb . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbfval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) = ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) | |
| 2 | 1 | mpteq2dv | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑥 ·ih 𝑧 ) = ( 𝑥 ·ih 𝐵 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) = ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 5 | 4 | mpteq2dv | ⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 6 | df-kb | ⊢ ketbra = ( 𝑦 ∈ ℋ , 𝑧 ∈ ℋ ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) ) ) | |
| 7 | ax-hilex | ⊢ ℋ ∈ V | |
| 8 | 7 | mptex | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ∈ V |
| 9 | 2 5 6 8 | ovmpo | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |