This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixx.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
||
| ixx.3 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A T w ) ) |
||
| ixx.4 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w U B ) ) |
||
| Assertion | ixxssixx | |- ( A O B ) C_ ( A P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixx.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
|
| 3 | ixx.3 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A T w ) ) |
|
| 4 | ixx.4 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w U B ) ) |
|
| 5 | 1 | elmpocl | |- ( w e. ( A O B ) -> ( A e. RR* /\ B e. RR* ) ) |
| 6 | simp1 | |- ( ( w e. RR* /\ A R w /\ w S B ) -> w e. RR* ) |
|
| 7 | 6 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> w e. RR* ) ) |
| 8 | simpl | |- ( ( A e. RR* /\ B e. RR* ) -> A e. RR* ) |
|
| 9 | 3simpa | |- ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ A R w ) ) |
|
| 10 | 3 | expimpd | |- ( A e. RR* -> ( ( w e. RR* /\ A R w ) -> A T w ) ) |
| 11 | 8 9 10 | syl2im | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> A T w ) ) |
| 12 | simpr | |- ( ( A e. RR* /\ B e. RR* ) -> B e. RR* ) |
|
| 13 | 3simpb | |- ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ w S B ) ) |
|
| 14 | 4 | ancoms | |- ( ( B e. RR* /\ w e. RR* ) -> ( w S B -> w U B ) ) |
| 15 | 14 | expimpd | |- ( B e. RR* -> ( ( w e. RR* /\ w S B ) -> w U B ) ) |
| 16 | 12 13 15 | syl2im | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> w U B ) ) |
| 17 | 7 11 16 | 3jcad | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ A T w /\ w U B ) ) ) |
| 18 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 19 | 2 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A P B ) <-> ( w e. RR* /\ A T w /\ w U B ) ) ) |
| 20 | 17 18 19 | 3imtr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) -> w e. ( A P B ) ) ) |
| 21 | 5 20 | mpcom | |- ( w e. ( A O B ) -> w e. ( A P B ) ) |
| 22 | 21 | ssriv | |- ( A O B ) C_ ( A P B ) |