This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of fodom that doesn't require the Axiom of Choice ax-ac . If A has choice sequences of length B , then any surjection from A to B can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomacn | ⊢ ( 𝐴 ∈ AC 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foelrn | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑦 ) ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 3 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 4 | 3 | eqeq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 5 | 4 | acni3 | ⊢ ( ( 𝐴 ∈ AC 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 7 | simpll | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝐴 ∈ AC 𝐵 ) | |
| 8 | acnrcl | ⊢ ( 𝐴 ∈ AC 𝐵 → 𝐵 ∈ V ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝐵 ∈ V ) |
| 10 | simprl | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 11 | fveq2 | ⊢ ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 12 | simprr | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 13 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 14 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ 𝑦 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 17 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 18 | 2fveq3 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ 𝑧 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 20 | 19 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 21 | 16 20 | eqeqan12d | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 = 𝑧 ↔ ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 22 | 21 | anandis | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 = 𝑧 ↔ ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 23 | 12 22 | sylan | ⊢ ( ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 = 𝑧 ↔ ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 24 | 11 23 | imbitrrid | ⊢ ( ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 25 | 24 | ralrimivva | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 26 | dff13 | ⊢ ( 𝑓 : 𝐵 –1-1→ 𝐴 ↔ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 27 | 10 25 26 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 28 | f1dom2g | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ AC 𝐵 ∧ 𝑓 : 𝐵 –1-1→ 𝐴 ) → 𝐵 ≼ 𝐴 ) | |
| 29 | 9 7 27 28 | syl3anc | ⊢ ( ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝐵 ≼ 𝐴 ) |
| 30 | 6 29 | exlimddv | ⊢ ( ( 𝐴 ∈ AC 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| 31 | 30 | ex | ⊢ ( 𝐴 ∈ AC 𝐵 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) |