This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunab | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } | |
| 3 | 1 2 | nfiun | ⊢ Ⅎ 𝑦 ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } |
| 4 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } | |
| 5 | 3 4 | cleqf | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) ) |
| 6 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 8 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) | |
| 9 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) |
| 11 | 5 10 | mpgbir | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |