This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunab | |- U_ x e. A { y | ph } = { y | E. x e. A ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | |- F/_ y A |
|
| 2 | nfab1 | |- F/_ y { y | ph } |
|
| 3 | 1 2 | nfiun | |- F/_ y U_ x e. A { y | ph } |
| 4 | nfab1 | |- F/_ y { y | E. x e. A ph } |
|
| 5 | 3 4 | cleqf | |- ( U_ x e. A { y | ph } = { y | E. x e. A ph } <-> A. y ( y e. U_ x e. A { y | ph } <-> y e. { y | E. x e. A ph } ) ) |
| 6 | abid | |- ( y e. { y | ph } <-> ph ) |
|
| 7 | 6 | rexbii | |- ( E. x e. A y e. { y | ph } <-> E. x e. A ph ) |
| 8 | eliun | |- ( y e. U_ x e. A { y | ph } <-> E. x e. A y e. { y | ph } ) |
|
| 9 | abid | |- ( y e. { y | E. x e. A ph } <-> E. x e. A ph ) |
|
| 10 | 7 8 9 | 3bitr4i | |- ( y e. U_ x e. A { y | ph } <-> y e. { y | E. x e. A ph } ) |
| 11 | 5 10 | mpgbir | |- U_ x e. A { y | ph } = { y | E. x e. A ph } |