This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set L of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| Assertion | itg2l | ⊢ ( 𝐴 ∈ 𝐿 ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝐿 ↔ 𝐴 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
| 3 | simpr | ⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) → 𝐴 = ( ∫1 ‘ 𝑔 ) ) | |
| 4 | fvex | ⊢ ( ∫1 ‘ 𝑔 ) ∈ V | |
| 5 | 3 4 | eqeltrdi | ⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) → 𝐴 ∈ V ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) → 𝐴 ∈ V ) |
| 7 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 10 | 6 9 | elab3 | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) |
| 11 | 2 10 | bitri | ⊢ ( 𝐴 ∈ 𝐿 ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = ( ∫1 ‘ 𝑔 ) ) ) |