This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set L of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| Assertion | itg2l | |- ( A e. L <-> E. g e. dom S.1 ( g oR <_ F /\ A = ( S.1 ` g ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | 1 | eleq2i | |- ( A e. L <-> A e. { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) |
| 3 | simpr | |- ( ( g oR <_ F /\ A = ( S.1 ` g ) ) -> A = ( S.1 ` g ) ) |
|
| 4 | fvex | |- ( S.1 ` g ) e. _V |
|
| 5 | 3 4 | eqeltrdi | |- ( ( g oR <_ F /\ A = ( S.1 ` g ) ) -> A e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. g e. dom S.1 ( g oR <_ F /\ A = ( S.1 ` g ) ) -> A e. _V ) |
| 7 | eqeq1 | |- ( x = A -> ( x = ( S.1 ` g ) <-> A = ( S.1 ` g ) ) ) |
|
| 8 | 7 | anbi2d | |- ( x = A -> ( ( g oR <_ F /\ x = ( S.1 ` g ) ) <-> ( g oR <_ F /\ A = ( S.1 ` g ) ) ) ) |
| 9 | 8 | rexbidv | |- ( x = A -> ( E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( g oR <_ F /\ A = ( S.1 ` g ) ) ) ) |
| 10 | 6 9 | elab3 | |- ( A e. { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } <-> E. g e. dom S.1 ( g oR <_ F /\ A = ( S.1 ` g ) ) ) |
| 11 | 2 10 | bitri | |- ( A e. L <-> E. g e. dom S.1 ( g oR <_ F /\ A = ( S.1 ` g ) ) ) |