This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function iterated three times. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval3 | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 3 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 3 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 3 ) ) |
| 3 | 2 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 3 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 3 ) ) |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | 5 | a1i | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 2 ∈ ℕ0 ) |
| 7 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 8 | 1 | eqcomd | ⊢ ( 𝐹 ∈ 𝑉 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) = ( IterComp ‘ 𝐹 ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 2 ) = ( ( IterComp ‘ 𝐹 ) ‘ 2 ) ) |
| 10 | 9 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 2 ) = ( ( IterComp ‘ 𝐹 ) ‘ 2 ) ) |
| 11 | itcoval2 | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 2 ) = ( 𝐹 ∘ 𝐹 ) ) | |
| 12 | 10 11 | eqtrd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 2 ) = ( 𝐹 ∘ 𝐹 ) ) |
| 13 | eqidd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) | |
| 14 | 3ne0 | ⊢ 3 ≠ 0 | |
| 15 | neeq1 | ⊢ ( 𝑖 = 3 → ( 𝑖 ≠ 0 ↔ 3 ≠ 0 ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( 𝑖 = 3 → 𝑖 ≠ 0 ) |
| 17 | 16 | neneqd | ⊢ ( 𝑖 = 3 → ¬ 𝑖 = 0 ) |
| 18 | 17 | iffalsed | ⊢ ( 𝑖 = 3 → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = 𝐹 ) |
| 19 | 18 | adantl | ⊢ ( ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑖 = 3 ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = 𝐹 ) |
| 20 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 21 | 20 | a1i | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 3 ∈ ℕ0 ) |
| 22 | simpr | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ 𝑉 ) | |
| 23 | 13 19 21 22 | fvmptd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ 3 ) = 𝐹 ) |
| 24 | 4 6 7 12 23 | seqp1d | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 3 ) = ( ( 𝐹 ∘ 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |
| 25 | eqidd | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) | |
| 26 | coeq2 | ⊢ ( 𝑔 = ( 𝐹 ∘ 𝐹 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) | |
| 27 | 26 | ad2antrl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( 𝑔 = ( 𝐹 ∘ 𝐹 ) ∧ 𝑗 = 𝐹 ) ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) |
| 28 | coexg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∘ 𝐹 ) ∈ V ) | |
| 29 | 28 | anidms | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∘ 𝐹 ) ∈ V ) |
| 30 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 31 | coexg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( 𝐹 ∘ 𝐹 ) ∈ V ) → ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ∈ V ) | |
| 32 | 28 31 | syldan | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ∈ V ) |
| 33 | 32 | anidms | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ∈ V ) |
| 34 | 25 27 29 30 33 | ovmpod | ⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ∘ 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝐹 ) ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) |
| 36 | 3 24 35 | 3eqtrd | ⊢ ( ( Rel 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( ( IterComp ‘ 𝐹 ) ‘ 3 ) = ( 𝐹 ∘ ( 𝐹 ∘ 𝐹 ) ) ) |