This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcoval0mpt.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) | |
| Assertion | itcoval0mpt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ 𝐴 ↦ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval0mpt.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | fveq2i | ⊢ ( IterComp ‘ 𝐹 ) = ( IterComp ‘ ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) |
| 3 | 2 | fveq1i | ⊢ ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( ( IterComp ‘ ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 0 ) |
| 4 | mptexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 5 | itcoval0 | ⊢ ( ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ( ( IterComp ‘ ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 0 ) = ( I ↾ dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ( IterComp ‘ ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 0 ) = ( I ↾ dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 7 | 3 6 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 8 | dmmptg | ⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 9 | 8 | reseq2d | ⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → ( I ↾ dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) = ( I ↾ 𝐴 ) ) |
| 10 | mptresid | ⊢ ( I ↾ 𝐴 ) = ( 𝑛 ∈ 𝐴 ↦ 𝑛 ) | |
| 11 | 9 10 | eqtrdi | ⊢ ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → ( I ↾ dom ( 𝑛 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑛 ∈ 𝐴 ↦ 𝑛 ) ) |
| 12 | 7 11 | sylan9eq | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ 𝐴 ↦ 𝑛 ) ) |