This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all uniformly continuous function from uniform space U to uniform space V . (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ucnval | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → 𝑈 ∈ ∪ ran UnifOn ) |
| 3 | elfvunirn | ⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → 𝑉 ∈ ∪ ran UnifOn ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → 𝑉 ∈ ∪ ran UnifOn ) |
| 5 | ovex | ⊢ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∈ V | |
| 6 | 5 | rabex | ⊢ { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ∈ V |
| 7 | 6 | a1i | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ∈ V ) |
| 8 | simpr | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 ) | |
| 9 | 8 | unieqd | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ∪ 𝑣 = ∪ 𝑉 ) |
| 10 | 9 | dmeqd | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → dom ∪ 𝑣 = dom ∪ 𝑉 ) |
| 11 | simpl | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 𝑢 = 𝑈 ) | |
| 12 | 11 | unieqd | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ∪ 𝑢 = ∪ 𝑈 ) |
| 13 | 12 | dmeqd | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → dom ∪ 𝑢 = dom ∪ 𝑈 ) |
| 14 | 10 13 | oveq12d | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) = ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ) |
| 15 | 13 | raleqdv | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 16 | 13 15 | raleqbidv | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 17 | 11 16 | rexeqbidv | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 18 | 8 17 | raleqbidv | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 19 | 14 18 | rabeqbidv | ⊢ ( ( 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → { 𝑓 ∈ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) ∣ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
| 20 | df-ucn | ⊢ Cnu = ( 𝑢 ∈ ∪ ran UnifOn , 𝑣 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) ∣ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) | |
| 21 | 19 20 | ovmpoga | ⊢ ( ( 𝑈 ∈ ∪ ran UnifOn ∧ 𝑉 ∈ ∪ ran UnifOn ∧ { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ∈ V ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
| 22 | 2 4 7 21 | syl3anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
| 23 | ustbas2 | ⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → 𝑌 = dom ∪ 𝑉 ) | |
| 24 | ustbas2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) | |
| 25 | 23 24 | oveqan12rd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑌 ↑m 𝑋 ) = ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ) |
| 26 | 24 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → 𝑋 = dom ∪ 𝑈 ) |
| 27 | 26 | raleqdv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 28 | 26 27 | raleqbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 29 | 28 | rexbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 30 | 29 | ralbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 31 | 25 30 | rabeqbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( dom ∪ 𝑉 ↑m dom ∪ 𝑈 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ dom ∪ 𝑈 ∀ 𝑦 ∈ dom ∪ 𝑈 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
| 32 | 22 31 | eqtr4d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝑈 Cnu 𝑉 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑠 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |