This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgriedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isubgriedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | isubgrvtxuhgr | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , 𝐸 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgriedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isubgriedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | ssidd | ⊢ ( 𝐺 ∈ UHGraph → 𝑉 ⊆ 𝑉 ) | |
| 4 | 1 2 | isisubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
| 5 | 3 4 | mpdan | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 ) |
| 6 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 7 | funrel | ⊢ ( Fun 𝐸 → Rel 𝐸 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐺 ∈ UHGraph → Rel 𝐸 ) |
| 9 | 1 2 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 10 | ffvelcdm | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) | |
| 11 | eldifi | ⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ∈ 𝒫 𝑉 ) | |
| 12 | 11 | elpwid | ⊢ ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 𝑥 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 ) |
| 14 | 13 | rabeqcda | ⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } = dom 𝐸 ) |
| 15 | 14 | eqimsscd | ⊢ ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
| 16 | 9 15 | syl | ⊢ ( 𝐺 ∈ UHGraph → dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) |
| 17 | relssres | ⊢ ( ( Rel 𝐸 ∧ dom 𝐸 ⊆ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) | |
| 18 | 8 16 17 | syl2anc | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) = 𝐸 ) |
| 19 | 18 | opeq2d | ⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑉 } ) 〉 = 〈 𝑉 , 𝐸 〉 ) |
| 20 | 5 19 | eqtrd | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr 𝑉 ) = 〈 𝑉 , 𝐸 〉 ) |