This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isubgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| isubgredg.h | ⊢ 𝐻 = ( 𝐺 ISubGr 𝑆 ) | ||
| isubgredg.i | ⊢ 𝐼 = ( Edg ‘ 𝐻 ) | ||
| Assertion | isubgredgss | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐼 ⊆ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isubgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | isubgredg.h | ⊢ 𝐻 = ( 𝐺 ISubGr 𝑆 ) | |
| 4 | isubgredg.i | ⊢ 𝐼 = ( Edg ‘ 𝐻 ) | |
| 5 | 3 | fveq2i | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 7 | 1 6 | isubgriedg | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 8 | 5 7 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ 𝐻 ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 9 | 8 | rneqd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ran ( iEdg ‘ 𝐻 ) = ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 10 | resss | ⊢ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( iEdg ‘ 𝐺 ) | |
| 11 | rnss | ⊢ ( ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( iEdg ‘ 𝐺 ) → ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ran ( iEdg ‘ 𝐺 ) ) | |
| 12 | 10 11 | mp1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ran ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ran ( iEdg ‘ 𝐺 ) ) |
| 13 | 9 12 | eqsstrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ran ( iEdg ‘ 𝐻 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) |
| 14 | edgval | ⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) | |
| 15 | 4 14 | eqtri | ⊢ 𝐼 = ran ( iEdg ‘ 𝐻 ) |
| 16 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 17 | 2 16 | eqtri | ⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 18 | 13 15 17 | 3sstr4g | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐼 ⊆ 𝐸 ) |