This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgriedg.v | |- V = ( Vtx ` G ) |
|
| isubgriedg.e | |- E = ( iEdg ` G ) |
||
| Assertion | isubgrvtxuhgr | |- ( G e. UHGraph -> ( G ISubGr V ) = <. V , E >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgriedg.v | |- V = ( Vtx ` G ) |
|
| 2 | isubgriedg.e | |- E = ( iEdg ` G ) |
|
| 3 | ssidd | |- ( G e. UHGraph -> V C_ V ) |
|
| 4 | 1 2 | isisubgr | |- ( ( G e. UHGraph /\ V C_ V ) -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. ) |
| 5 | 3 4 | mpdan | |- ( G e. UHGraph -> ( G ISubGr V ) = <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. ) |
| 6 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun E ) |
| 7 | funrel | |- ( Fun E -> Rel E ) |
|
| 8 | 6 7 | syl | |- ( G e. UHGraph -> Rel E ) |
| 9 | 1 2 | uhgrf | |- ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) ) |
| 10 | ffvelcdm | |- ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) e. ( ~P V \ { (/) } ) ) |
|
| 11 | eldifi | |- ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) e. ~P V ) |
|
| 12 | 11 | elpwid | |- ( ( E ` x ) e. ( ~P V \ { (/) } ) -> ( E ` x ) C_ V ) |
| 13 | 10 12 | syl | |- ( ( E : dom E --> ( ~P V \ { (/) } ) /\ x e. dom E ) -> ( E ` x ) C_ V ) |
| 14 | 13 | rabeqcda | |- ( E : dom E --> ( ~P V \ { (/) } ) -> { x e. dom E | ( E ` x ) C_ V } = dom E ) |
| 15 | 14 | eqimsscd | |- ( E : dom E --> ( ~P V \ { (/) } ) -> dom E C_ { x e. dom E | ( E ` x ) C_ V } ) |
| 16 | 9 15 | syl | |- ( G e. UHGraph -> dom E C_ { x e. dom E | ( E ` x ) C_ V } ) |
| 17 | relssres | |- ( ( Rel E /\ dom E C_ { x e. dom E | ( E ` x ) C_ V } ) -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E ) |
|
| 18 | 8 16 17 | syl2anc | |- ( G e. UHGraph -> ( E |` { x e. dom E | ( E ` x ) C_ V } ) = E ) |
| 19 | 18 | opeq2d | |- ( G e. UHGraph -> <. V , ( E |` { x e. dom E | ( E ` x ) C_ V } ) >. = <. V , E >. ) |
| 20 | 5 19 | eqtrd | |- ( G e. UHGraph -> ( G ISubGr V ) = <. V , E >. ) |