This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-totbnd | ⊢ TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctotbnd | ⊢ TotBnd | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vm | ⊢ 𝑚 | |
| 4 | cmet | ⊢ Met | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 5 4 | cfv | ⊢ ( Met ‘ 𝑥 ) |
| 7 | vd | ⊢ 𝑑 | |
| 8 | crp | ⊢ ℝ+ | |
| 9 | vv | ⊢ 𝑣 | |
| 10 | cfn | ⊢ Fin | |
| 11 | 9 | cv | ⊢ 𝑣 |
| 12 | 11 | cuni | ⊢ ∪ 𝑣 |
| 13 | 12 5 | wceq | ⊢ ∪ 𝑣 = 𝑥 |
| 14 | vb | ⊢ 𝑏 | |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 14 | cv | ⊢ 𝑏 |
| 17 | 15 | cv | ⊢ 𝑦 |
| 18 | cbl | ⊢ ball | |
| 19 | 3 | cv | ⊢ 𝑚 |
| 20 | 19 18 | cfv | ⊢ ( ball ‘ 𝑚 ) |
| 21 | 7 | cv | ⊢ 𝑑 |
| 22 | 17 21 20 | co | ⊢ ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 23 | 16 22 | wceq | ⊢ 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 24 | 23 15 5 | wrex | ⊢ ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 25 | 24 14 11 | wral | ⊢ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
| 26 | 13 25 | wa | ⊢ ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 27 | 26 9 10 | wrex | ⊢ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 28 | 27 7 8 | wral | ⊢ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
| 29 | 28 3 6 | crab | ⊢ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } |
| 30 | 1 2 29 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
| 31 | 0 30 | wceq | ⊢ TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |