This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tmd | ⊢ TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctmd | ⊢ TopMnd | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cmnd | ⊢ Mnd | |
| 3 | ctps | ⊢ TopSp | |
| 4 | 2 3 | cin | ⊢ ( Mnd ∩ TopSp ) |
| 5 | ctopn | ⊢ TopOpen | |
| 6 | 1 | cv | ⊢ 𝑓 |
| 7 | 6 5 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
| 8 | vj | ⊢ 𝑗 | |
| 9 | cplusf | ⊢ +𝑓 | |
| 10 | 6 9 | cfv | ⊢ ( +𝑓 ‘ 𝑓 ) |
| 11 | 8 | cv | ⊢ 𝑗 |
| 12 | ctx | ⊢ ×t | |
| 13 | 11 11 12 | co | ⊢ ( 𝑗 ×t 𝑗 ) |
| 14 | ccn | ⊢ Cn | |
| 15 | 13 11 14 | co | ⊢ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 16 | 10 15 | wcel | ⊢ ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 17 | 16 8 7 | wsbc | ⊢ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 18 | 17 1 4 | crab | ⊢ { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } |
| 19 | 0 18 | wceq | ⊢ TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } |