This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tgp | ⊢ TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctgp | ⊢ TopGrp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cgrp | ⊢ Grp | |
| 3 | ctmd | ⊢ TopMnd | |
| 4 | 2 3 | cin | ⊢ ( Grp ∩ TopMnd ) |
| 5 | ctopn | ⊢ TopOpen | |
| 6 | 1 | cv | ⊢ 𝑓 |
| 7 | 6 5 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
| 8 | vj | ⊢ 𝑗 | |
| 9 | cminusg | ⊢ invg | |
| 10 | 6 9 | cfv | ⊢ ( invg ‘ 𝑓 ) |
| 11 | 8 | cv | ⊢ 𝑗 |
| 12 | ccn | ⊢ Cn | |
| 13 | 11 11 12 | co | ⊢ ( 𝑗 Cn 𝑗 ) |
| 14 | 10 13 | wcel | ⊢ ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) |
| 15 | 14 8 7 | wsbc | ⊢ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) |
| 16 | 15 1 4 | crab | ⊢ { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) } |
| 17 | 0 16 | wceq | ⊢ TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) } |