This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrgd.s | ⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) | |
| issubrgd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) | ||
| issubrgd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) | ||
| issubrgd.ss | ⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) | ||
| issubrgd.zcl | ⊢ ( 𝜑 → 0 ∈ 𝐷 ) | ||
| issubrgd.acl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) | ||
| issubrgd.ncl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) | ||
| issubrgd.o | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐼 ) ) | ||
| issubrgd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝐼 ) ) | ||
| issubrgd.ocl | ⊢ ( 𝜑 → 1 ∈ 𝐷 ) | ||
| issubrgd.tcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) | ||
| issubrgd.g | ⊢ ( 𝜑 → 𝐼 ∈ Ring ) | ||
| Assertion | issubrgd | ⊢ ( 𝜑 → 𝐷 ∈ ( SubRing ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | ⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) | |
| 2 | issubrgd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) | |
| 3 | issubrgd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) | |
| 4 | issubrgd.ss | ⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) | |
| 5 | issubrgd.zcl | ⊢ ( 𝜑 → 0 ∈ 𝐷 ) | |
| 6 | issubrgd.acl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) | |
| 7 | issubrgd.ncl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) | |
| 8 | issubrgd.o | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐼 ) ) | |
| 9 | issubrgd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝐼 ) ) | |
| 10 | issubrgd.ocl | ⊢ ( 𝜑 → 1 ∈ 𝐷 ) | |
| 11 | issubrgd.tcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) | |
| 12 | issubrgd.g | ⊢ ( 𝜑 → 𝐼 ∈ Ring ) | |
| 13 | ringgrp | ⊢ ( 𝐼 ∈ Ring → 𝐼 ∈ Grp ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
| 15 | 1 2 3 4 5 6 7 14 | issubgrpd2 | ⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |
| 16 | 8 10 | eqeltrrd | ⊢ ( 𝜑 → ( 1r ‘ 𝐼 ) ∈ 𝐷 ) |
| 17 | 9 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ) |
| 18 | 11 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) |
| 19 | 17 18 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 20 | 19 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 22 | eqid | ⊢ ( 1r ‘ 𝐼 ) = ( 1r ‘ 𝐼 ) | |
| 23 | eqid | ⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) | |
| 24 | 21 22 23 | issubrg2 | ⊢ ( 𝐼 ∈ Ring → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
| 25 | 12 24 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
| 26 | 15 16 20 25 | mpbir3and | ⊢ ( 𝜑 → 𝐷 ∈ ( SubRing ‘ 𝐼 ) ) |