This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrgd.s | |- ( ph -> S = ( I |`s D ) ) |
|
| issubrgd.z | |- ( ph -> .0. = ( 0g ` I ) ) |
||
| issubrgd.p | |- ( ph -> .+ = ( +g ` I ) ) |
||
| issubrgd.ss | |- ( ph -> D C_ ( Base ` I ) ) |
||
| issubrgd.zcl | |- ( ph -> .0. e. D ) |
||
| issubrgd.acl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
||
| issubrgd.ncl | |- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
||
| issubrgd.o | |- ( ph -> .1. = ( 1r ` I ) ) |
||
| issubrgd.t | |- ( ph -> .x. = ( .r ` I ) ) |
||
| issubrgd.ocl | |- ( ph -> .1. e. D ) |
||
| issubrgd.tcl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .x. y ) e. D ) |
||
| issubrgd.g | |- ( ph -> I e. Ring ) |
||
| Assertion | issubrgd | |- ( ph -> D e. ( SubRing ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | |- ( ph -> S = ( I |`s D ) ) |
|
| 2 | issubrgd.z | |- ( ph -> .0. = ( 0g ` I ) ) |
|
| 3 | issubrgd.p | |- ( ph -> .+ = ( +g ` I ) ) |
|
| 4 | issubrgd.ss | |- ( ph -> D C_ ( Base ` I ) ) |
|
| 5 | issubrgd.zcl | |- ( ph -> .0. e. D ) |
|
| 6 | issubrgd.acl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
|
| 7 | issubrgd.ncl | |- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
|
| 8 | issubrgd.o | |- ( ph -> .1. = ( 1r ` I ) ) |
|
| 9 | issubrgd.t | |- ( ph -> .x. = ( .r ` I ) ) |
|
| 10 | issubrgd.ocl | |- ( ph -> .1. e. D ) |
|
| 11 | issubrgd.tcl | |- ( ( ph /\ x e. D /\ y e. D ) -> ( x .x. y ) e. D ) |
|
| 12 | issubrgd.g | |- ( ph -> I e. Ring ) |
|
| 13 | ringgrp | |- ( I e. Ring -> I e. Grp ) |
|
| 14 | 12 13 | syl | |- ( ph -> I e. Grp ) |
| 15 | 1 2 3 4 5 6 7 14 | issubgrpd2 | |- ( ph -> D e. ( SubGrp ` I ) ) |
| 16 | 8 10 | eqeltrrd | |- ( ph -> ( 1r ` I ) e. D ) |
| 17 | 9 | oveqdr | |- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) = ( x ( .r ` I ) y ) ) |
| 18 | 11 | 3expb | |- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) e. D ) |
| 19 | 17 18 | eqeltrrd | |- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x ( .r ` I ) y ) e. D ) |
| 20 | 19 | ralrimivva | |- ( ph -> A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) |
| 21 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 22 | eqid | |- ( 1r ` I ) = ( 1r ` I ) |
|
| 23 | eqid | |- ( .r ` I ) = ( .r ` I ) |
|
| 24 | 21 22 23 | issubrg2 | |- ( I e. Ring -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
| 25 | 12 24 | syl | |- ( ph -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
| 26 | 15 16 20 25 | mpbir3and | |- ( ph -> D e. ( SubRing ` I ) ) |