This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrgd.s | ||
| issubrgd.z | |||
| issubrgd.p | |||
| issubrgd.ss | |||
| issubrgd.zcl | |||
| issubrgd.acl | |||
| issubrgd.ncl | |||
| issubrgd.o | |||
| issubrgd.t | |||
| issubrgd.ocl | |||
| issubrgd.tcl | |||
| issubrgd.g | |||
| Assertion | issubrgd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrgd.s | ||
| 2 | issubrgd.z | ||
| 3 | issubrgd.p | ||
| 4 | issubrgd.ss | ||
| 5 | issubrgd.zcl | ||
| 6 | issubrgd.acl | ||
| 7 | issubrgd.ncl | ||
| 8 | issubrgd.o | ||
| 9 | issubrgd.t | ||
| 10 | issubrgd.ocl | ||
| 11 | issubrgd.tcl | ||
| 12 | issubrgd.g | ||
| 13 | ringgrp | ||
| 14 | 12 13 | syl | |
| 15 | 1 2 3 4 5 6 7 14 | issubgrpd2 | |
| 16 | 8 10 | eqeltrrd | |
| 17 | 9 | oveqdr | |
| 18 | 11 | 3expb | |
| 19 | 17 18 | eqeltrrd | |
| 20 | 19 | ralrimivva | |
| 21 | eqid | ||
| 22 | eqid | ||
| 23 | eqid | ||
| 24 | 21 22 23 | issubrg2 | |
| 25 | 12 24 | syl | |
| 26 | 15 16 20 25 | mpbir3and |