This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| issubmnd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| issubmnd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| issubmnd.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| Assertion | issubmnd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → ( 𝐻 ∈ Mnd ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | issubmnd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | issubmnd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | issubmnd.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 5 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐻 ∈ Mnd ) | |
| 6 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 7 | simpll2 | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 8 | 4 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 10 | 6 9 | eleqtrd | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
| 11 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 12 | 11 9 | eleqtrd | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 15 | 13 14 | mndcl | ⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 16 | 5 10 12 15 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 17 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 18 | 17 | ssex | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → 𝑆 ∈ V ) |
| 20 | 4 2 | ressplusg | ⊢ ( 𝑆 ∈ V → + = ( +g ‘ 𝐻 ) ) |
| 21 | 19 20 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → + = ( +g ‘ 𝐻 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → + = ( +g ‘ 𝐻 ) ) |
| 23 | 22 | oveqd | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 24 | 16 23 9 | 3eltr4d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 25 | 24 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 26 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) | |
| 27 | 26 8 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 28 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → + = ( +g ‘ 𝐻 ) ) |
| 29 | ovrspc2v | ⊢ ( ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) | |
| 30 | 29 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 31 | 30 | 3impb | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 32 | 31 | 3adant1l | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 33 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝐺 ∈ Mnd ) | |
| 34 | 26 | sseld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑢 ∈ 𝑆 → 𝑢 ∈ 𝐵 ) ) |
| 35 | 26 | sseld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑣 ∈ 𝑆 → 𝑣 ∈ 𝐵 ) ) |
| 36 | 26 | sseld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ 𝐵 ) ) |
| 37 | 34 35 36 | 3anim123d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 39 | 1 2 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 40 | 33 38 39 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 41 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 0 ∈ 𝑆 ) | |
| 42 | 26 | sselda | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝐵 ) |
| 43 | 1 2 3 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑢 ∈ 𝐵 ) → ( 0 + 𝑢 ) = 𝑢 ) |
| 44 | 33 42 43 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ 𝑢 ∈ 𝑆 ) → ( 0 + 𝑢 ) = 𝑢 ) |
| 45 | 1 2 3 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 + 0 ) = 𝑢 ) |
| 46 | 33 42 45 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 + 0 ) = 𝑢 ) |
| 47 | 27 28 32 40 41 44 46 | ismndd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mnd ) |
| 48 | 25 47 | impbida | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → ( 𝐻 ∈ Mnd ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |